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The Himalaya orogenic belt produces frequent large earthquakes that affect population centers along a
length of over 2500 km. The 2015 Gorkha, Nepal earthquake (Mw 7.8) ruptured the Main Himalayan Thrust
(MHT) and allows direct measurements of the behavior of the continental collision zone. We study the MHT
using seismic waveforms recorded by local stations that completely cover the aftershock zone. The MHT
exhibits clear lateral variation along geologic strike, with the Lesser Himalayan ramp having moderate dip
on the MHT beneath the mainshock area and a flatter and deeper MHT beneath the eastern end of the
aftershock zone. East of the aftershock zone, seismic wave speed increases at MHT depths, perhaps due to
subduction of an Indian basement ridge. A similar magnitude wave speed change occurs at the western end
of the aftershock zone. These gross morphological structures of the MHT controlled the rupture length of the
Gorkha earthquake.
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INTRODUCTION

The collision of the Indian and Eurasian plates formed the Himalaya,
the highest mountains in the world, and presents a serious earth-
quake hazard to millions of people (1). Many important science
questions remain about Himalayan formation and seismic hazards,
including distinguishing between different possible geometries of the
Main Himalayan Thrust (MHT) (2, 3) and better definition of struc-
tural causes and locations of rupture segmentation both across-strike
and along-strike of the orogenic belt (4–6). Although previous studies
have investigated fault morphology and structural heterogeneity
beneath the High Himalaya, the complexity and lack of near-field
observations makes interpretations uncertain. The devastating
25 April 2015 Mw (moment magnitude) 7.8 earthquake with its epi-
center in Gorkha, Nepal has drawn renewed attention to the severe
Himalayan geohazards anticipated from future large earthquakes.
Our seismic observations of the aftershock zone provide a unique op-
portunity to further understand the frontal part of the continental col-
lision zone (Fig. 1).

After the recognition of the MHT based on focal depths and fault
plane solutions of moderate earthquakes (2), studies of the MHT pro-
liferated. The MHT has been variously identified on the basis of wave
speed changes likely due to water released from underthrust sediments
and trapped beneath the fault, lithologic changes (3, 7), an anisotropic
zone perhaps due to shearing above the fault (8), intense microseismic
activity (9), and high electrical conductivity (10). The source parameters
of the Gorkha earthquake given by the common earthquake catalogs
such as from the U.S. Geological Survey (USGS) show that the rupture
nucleated at ~8-kmdepth and propagated for ~120 kmalong-strike and
~80 kmup- and down-dip.However, thismodel appears rather simplis-
tic when compared to the geometry of the MHT interpreted from geo-
physical and geological studies (7, 9–12), all of which show a
characteristic ramp-flat-ramp thrust-belt structure across-strike.

The mainshock was followed by a large number of aftershocks
including the 12 May 2015 Mw 7.3 Kodari aftershock (13) that was
initiated near the eastern termination of the mainshock rupture. Al-
though it is widely accepted that the mainshock nucleated and
ruptured on the MHT, the aftershock activity has remained contro-
versial. Aftershocks have been relocated above the MHT and treated
as an illuminating faulting structure in the Himalayan orogenic
prism (14–16) or on the MHT, nominally delineating a ramp geom-
etry of the MHT (17), and even below the MHT, interpreted as re-
lated to earthquake-induced stress transformation in the subducting
Indian lower crust (18, 19).

The 2015 Gorkha earthquake is the largest earthquake to occur on
the central segment of the Himalayas in 80 years and the first major
event since digital seismic observations have been available. We com-
bine seismic waveforms from several different deployments, including
our network of 22 seismic stations deployed in China along the China-
Nepal border to the north of the aftershock zone before the mainshock
and our NAMASTE (Nepal Array Measuring Aftershock Seismicity
Trailing Earthquake) network of 46 stations within and to the south
of the aftershock zone 2 months after the mainshock. We also used
waveform and arrival time data from the China National Seismic
Network, the Nepalese Seismic Network, and other stations in nearby
countries (Fig. 1). Using arrival times and waveform modeling (Fig. 2
and fig. S1), we determined source parameters of earthquakes, velocity
structures, and discontinuity topography in and around the source area
(Fig. 2; see Materials and Methods).

Our results show substantial cross-strike and along-strike variations
in the inferred geometry of the MHT and in wave speed variations
around theMHT.Our results includemany features of previous studies
of earthquake relocations (14, 15), fault plane solutions (17), tomo-
graphic models (20–23), and receiver function images (3, 24), but our
new model has better depth and lateral resolution because of our com-
bination of all the datasets mentioned above. We took advantage of the
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merged dataset by adopting a comprehensive strategy using direct, re-
flected, and refracted waveforms recorded by local, regional, and tele-
seismic stations as discussed in Materials and Methods.
 on June 26, 2019
rg/
RESULTS
Weuse our 266well-located earthquakes (table S1), 18 well-determined
focal mechanisms (Fig. 3 and table S2), and our three-dimensional to-
mographic model (data file S1) to interpret the earthquake activity and
velocity structure of the Himalayan collision zone, particularly in the
depth range of the MHT (Fig. 3). These 266 earthquakes are chosen
from the total of 533 events (Mw > 3.5) in the Gorkha earthquake
sequence because they have more than 30 recording stations, and relo-
cation uncertainties estimated to be less than ±0.5 km (fig. S2). The epi-
centers of most of these earthquakes are clustered along the boundary
between the physiographic Lesser and Higher Himalaya trending west-
northwest (WNW) to east-southeast (ESE), the so-called PT2 (physical
transition 2), locally coincident with the Gorkha-Pokhara Anticlinori-
um (12).Mechanisms formost of the events show reverse faulting, while
some of the earthquakes located between the Gorkha earthquake epi-
center and the Kathmandu basin exhibit strike-slip faulting (table S2).
In the western part of the aftershock zone (longitude <85.5°E), there are
two separate seismic belts located south and north of the Kathmandu
basin (25). Between these two seismic belts, in the area corresponding to
large coseismic slip in the beginning 30 s of themainshock rupture pro-
cess (4, 26), aftershocks are rare. In contrast, to the east (longitude
>85.5°E),most of the aftershocks are concentrated in a single belt south-
west of theMw 7.3 Kodari earthquake, suggesting along-strike variation
in fault structure (fig. S3).
Bai et al., Sci. Adv. 2019;5 : eaav0723 26 June 2019
Our new tomographic images on the MHT surface (see Fig. 3 and
data file S1) show high Vp values in the aftershock zone, similar to pre-
vious tomographic images at shallow depth (23). However, because of
many arrival times recorded with dense station coverage in and around
the aftershock zone, we are able to image velocity variations in more
detail, as confirmed by our resolution tests (fig. S4). The following
detailed features are visible: (i) The high-Vp zone (~6.3 km/s) extends
~250 kmalong-strike, 100kmbeyond the aftershock zone to~87°Ewhere
the 1934Mw = 8.2 earthquake occurred but is bounded to WNW and
ESE by lower wave speeds (~5.8 km/s). (ii) There are two cross-strike
bands of high-Vp zones at ~84.7°E and ~86.5°E. (iii) The low-Vp region
between the two cross-strike high-Vp zones is in the area where the
southern aftershock belt is absent.

Cross-strike and along-strike cross sections show the along-strike
variations in the Gorkha aftershock zone (Fig. 4). We locate the hypo-
center of the Mw 7.8 earthquake ~16.5 km below sea level (we give all
depths as below sea level), comparable with the depth of the MHT esti-
mated from previous geophysical (3, 10, 24) and geological (12) studies
(Fig. 4A). Both theMw 7.8 mainshock and theMw 7.3 largest aftershock
have similar north dippingnodal planes dipping~5°N to 7°N (13) (Figs. 3
and 4), strongly suggestive of rupture of the MHT, although likely an
oversimplification as representing an average ofMHTdip across the rup-
ture area.Our~18.5-km rupture depth for theMw 7.3 aftershock is slight-
ly deeper than themainshock, in good agreementwith previous estimates
of earthquake location from the Nepalese Seismic Network (25) and the
MHTdepth from receiver function analysis (Fig. 4B) (8). Aftershocks be-
come deeper to the east as seen in Profile aa′ for over 100 km (Fig. 4C),
above a similar but steeper eastward deepening of theMoho in our tomo-
graphic image, consistent with previous geophysical studies (21, 24).
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Fig. 1. Tectonic map with seismicity and seismic stations. Earthquakes include the Mw 7.8 Gorkha and Mw 7.3 Kodari earthquakes (yellow stars), aftershocks (red
circles), earthquakes that occurred before the Gorkha earthquake but after 1990 (gray circles) (www.isc.ac.uk/), and historic seismicity of Mw >7.5 since 1500 (large solid gray
circles). Seismic stations include those we deployed along the China-Nepal border (blue triangles), in the aftershock zone (black triangles), and those of the Nepalese Seismic
Network (green triangles). EVN (Everest) is a broadband seismic station deployed at the Khumbu Valley with arrival time and waveform data available since May 2015. The
arrow indicates the direction of the Indian plate with respect to the Eurasian plate. The thick gray curve shows the location of Hi-CLIMB (Himalayan-Tibetan Continental
Lithosphere During Mountain Building) (3) and HIMNT (Himalaya Nepal-Tibet Seismic Experiment) (8) cross sections (Fig. 4) and stations. The gray rectangle indicates the area
shown in Fig. 3. Inset: Seismic stations we used from the larger area. MFT, Main Frontal Thrust; MBT, Main Boundary Thrust; MCT, Main Central Thrust; STD, South Tibet
Detachment; and YZS, Yarlung Zangbo Suture.
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DISCUSSION
Locating earthquakes in plate convergence regions around the world is
problematic due to the uncertainties in the local three-dimensional ve-
locity structure and lack of near-source recordings. Multievent reloca-
tion is an improved method to precisely determine relative hypocenter
locations.However, the absolute values of the relocated hypocenters can
still be affected by the assumed velocity model and starting earthquake
locations (15, 18). Earthquake locations could be deeper than we show
if theMHT andMoho discontinuities are shallower and inferred P- and
S -wave velocities are higher than the actual values. Our careful choice of
a suitable velocity model and our use of different types of waveform
should yield accurate earthquake source parameters.

As expected, theMHTdeepens to the north-northeast (NNE) paral-
lel to the plate convergence direction as the Indian plate subducts be-
neath Tibet, as does the Moho transition zone, shown as the region
between isopleths of Vp = 7.8 and 8.0 km/s (Figs. 4 and 5). Both the
MHT andMoho have average dips of ~5° NNE across strike, consistent
with the nodal plane of the Gorkha earthquake. It is remarkable, how-
ever, that the Moho, as defined by Vp isopleths, also has an average dip
of >5° ESE, along-strike, for more than 100 km (Fig. 4C). Although the
Moho depth in our tomographic images [and others (20, 21)] is system-
atically deeper than that obtained by receiver function analysis (Fig. 4)
(3, 24), likely due, in large part, to our arbitrary choice of 7.8 to 8.0 km/s
asmarking theMoho, comparison of these two profiles shows the same
Bai et al., Sci. Adv. 2019;5 : eaav0723 26 June 2019
ESE dip (Fig. 4C). The deeper edge of the distribution of the aftershocks
to the east of 85°E (i.e., excluding the mainshock and a few nearby
events) also dips ESE, although only ~2°. This observation is reinforced
by a similar ESE dip of the 6 km/s isovelocity line. Because of the nature
of our data, we cannot distinguishwhether the smooth along-strike dips
in our tomography and aftershock catalog (Fig. 4C) may actually con-
ceal lateral steps in the MHT or Moho depth.

About 95% of our well-located aftershocks are shallower than the
Mw 7.8 and 7.3 events; hence, they are located within the hanging wall
above the MHT. Thus, the deeper edge of the main aftershock
distribution likely marks the MHT. The great preponderance of earth-
quakes in the hangingwall, compared to the small number of earthquakes
in the footwall, is consistent with neotectonic evolution of the MHT by
duplexing that created many faults in the hanging wall capable of reacti-
vation (7). The southern and northern seismic belts in the western
aftershock zone have lower edges at ~11.5 and ~16.5 km, respectively,
with only rare aftershocks in-between (a to a′ in Fig. 4). Previous studies
have mentioned a steep ramp beneath the Lesser Himalaya within the
western aftershock zone (3, 10, 12, 24), hereafter called the Lesser
Himalayan ramp (LHR), to distinguish it from the Higher Himalayan
ramp further north that is likely much larger but deeper so aseismic
(27). We show that the LHR is 25 to 30 km wide and dips between 9°
and 12° NNE, which is gentler than the ramp suggested by some pre-
vious studies (10, 12, 24), although slightly steeper than the fault plane of
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the Gorkha earthquake (Fig. 4A) (13). The southern seismic belt termi-
nates to the east beneath the Kathmandu allochthon. In contrast, earth-
quakes in the eastern aftershock zone and around the Mw 7.3 largest
aftershock are more concentrated and terminate downward at a rather
uniform depth, suggesting a flatter and deeper MHT than to the west
(Fig. 4B).

Although abrupt lateral transitions in the geometry of the MHT be-
tween the source areas of the 1505Mw 8.1 and 1934Mw 8.2 earthquakes
have been proposed from structural reconstructions and thermome-
chanical modeling (11), this geometry has never been directly imaged.
Here, we show that the three distinct lateral transitions recognized from
earthquake distributions (western: at the Gorkha mainshock and the
western limit of rupture; central: at the transition from two seismic belts
to one, close to Kathmandu; and eastern: at the eastern limit of rupture
close to the largest aftershock) are all spatially related to lateral wave
speed variations and hence to along-strike structures.

HighVp values as we find in the aftershock zone are likely associated
with high crustal strength that, in turn, can sustain large earthquakes.
The Gorkhamainshock hypocenter is located at the western edge of the
along-strike high-Vp region, and the 1934 Mw 8.2 Bihar-Nepal
earthquake occurred at the eastern end of the same high–wave speed
region (28). Thus, the 2015 and 1934 earthquakes all initiated close to
steep lateral velocity gradients (Fig. 3A) that likely mark structural
boundaries between differing geologic blocks.

The low-Vp region that coincides with the termination of the south-
ern aftershock belt is too deep to correspond to theKathmandu basin so
likely represents either or both a laterally restricted thick Precambrian
basin beneath the MHT (29) or fluids trapped beneath the MHT (10).
OurVp/Vs tomography shows that the low-Vp region is also a high-Vp/
Vs zone (fig. S5A) and thus more likely to correspond to fluids trapped
in thin cracks in crystalline basement. This along-strike wave speed gra-
Bai et al., Sci. Adv. 2019;5 : eaav0723 26 June 2019
dient and termination of the southern aftershock belt are likely linked to
the cross-strike structure of theMCT that steps >50 km toward the fore-
land (Fig. 3).

The cross-strike high-Vp anomaly to the east of the aftershock zone
has its western edge aligned with a cross-strike basement structure
inferred from gravity data (30), the “Patna fault Tangra Yum Co rift”
lineament (Figs. 3 and 5). Our high wave speeds may represent the
Munger-Saharsa basement ridge directly beneath the MHT, although
our observed high Vp does not extend as far east as the “Kishangang
fault–Xainza PumQu rift” lineament thought to be the eastern bound-
ary of the Munger-Saharsa ridge (29, 30). Reactivation of the Patna
faults during Indian plate subduction (22) may provide the lateral ramp
marked by our increased wave speeds that limited the eastern propaga-
tion of the Gorkha earthquake (12). Many aftershocks in the orogenic
prism exhibit steeper dip angles than the MHT, indicating reactivation
of duplex structures above the MHT in this context (27). In addition,
near-vertical active faults exist in the Kathmandu basin, which may
correspond to strike-slip earthquakes at MHT depths. Future seismic
imaging should address the true nature of these lateral transitions at
the MHT and even Moho depths so that we can better predict the
occurrence of other lateral changes that may have the potential to
control earthquake rupture patterns. The 2015 Gorkha earthquake
has only ruptured a small portion at the eastern end of the nearly
800-km-long seismic gap,which has hadno large earthquakes for over
500 years (1). Following our observations of the potential for structural
barriers to control major earthquake ruptures, the impetus now must
be to image the entire 2500-km-long Himalayan front to determine
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the morphology of the MHT and the likely controls on the maximum
magnitude of rupture that can be accommodated in different parts of
this convergent zone.
ne 26, 2019
MATERIALS AND METHODS
Data
Our estimates are based on five datasets: (i) waveform data from 22
broadband seismic stations along the China-Nepal border, deployed
by the Institute of Tibetan Plateau Research, Chinese Academy of
Sciences before the Gorkha earthquake (blue triangles in Fig. 1) (15);
(ii) waveform data from a dense seismic array of 45 seismic stations,
deployed by theNAMASTEproject team2months after themainshock
(black triangles in Figure 1) (31); (iii) waveform and arrival time data
from theDataManagement Centre of ChinaNational Seismic Network
(SEISDMC; doi:10.11998/SeisDmc/SN) (32) and the China Earthquake
Network Center (CENC) (blue triangles in the inset in Fig. 1); (iv) bul-
letins from theNepalese SeismicNetwork for earthquakes that occurred
since 1990 when most of the network was constructed (green triangles
in Fig. 1) (9, 14); (v) bulletins from theUSGSDataManagement Centre
(DMC) and International Seismological Centre for earthquakes of
Mw > 3.5 that occurred since 1990 (black triangles in the inset in Fig.
1). We used arrival time data from 1247 earthquakes, comprising the
Gorkha mainshock, 532 aftershocks ofMw > 4.0, and 714 earthquakes
that occurred in the whole study area before the Gorkha earthquake
since 1990 to study the source parameters and seismic tomography
Bai et al., Sci. Adv. 2019;5 : eaav0723 26 June 2019
(red and gray circles in Fig. 1). These data include approximately
15,000 P- and 6000 S-wave arrival times within epicentral distances
of 1000 km (fig. S1).

Earthquake relocation
We calculated the earthquake hypocenters in two steps. First, we
determinedhypocenters for theGorkha earthquake and 532 aftershocks
based on the HYPOSAT methodology (33). The combination of local
and regional seismic data is optimal for precise hypocenter determina-
tion. Using the hypocenters determined by HYPOSAT, we calculated
hypocenters of all earthquakes using a multiscale double-difference
earthquake relocationmethod (multi-DD) (34), which ismodified from
the hypoDD programs (35), to include arrival times of other phases re-
corded by regional seismic networks. The original hypoDD program
assumes a flat Earth model and is appropriate for local-scale calcula-
tions. It minimizes residuals between observed and theoretical travel
time differences, drk

ij for pairs of earthquakes i and j observed at the
same station k, thus

drijk ¼ ðdtijkÞobs � ðdtijkÞcal ¼ ðtik � tjkÞobs � ðtik � tjkÞcal ð1Þ

For regional scale, the sphericity of Earth should be taken into ac-
count (34). For eight moderate aftershocks (Mw 5.5 to 6.7 in table S2),
we constrain their focal depths by modeling the teleseismic waveforms
of the direct P and the surface reflection pP and sPwaves (15, 36, 37). To
help constrain the absolute focal depths of other earthquakes, we hold
the focal depths of these earthquakes fixed to be unchanged duringmul-
ti-DD processing by adding in the following constraint equation, in ad-
dition to Eq. (1), thus

dZi ¼ 0 ð2Þ

where Zi is the focal depth of event i, i = 1, 2, ..., n and n = 8 is the total
number of events for which the focal depths have been determined
using teleseismic waveform modeling. The joint analysis of local Pg
and Sg phases, regional Pn and Sn phases, and teleseismic pP and sP
phases with the precisemeasurements of differential phase arrival times
via waveform cross-correlation considerably improves the focal depth
determinations.

Seismic tomography
Starting from the relocated earthquakes, we carried out a seismic tomo-
graphic inversion to study the three-dimensional Vp and Vs structures
of the study region (fig. S5). In addition to the Gorkha earthquake
sequence of 533 earthquakes, we also used data from 714 earthquakes
that occurred in the study area before theGorkha earthquake since 1990
(gray circles in Fig. 1). We used regional-scale double-difference tomo-
graphy (38), which is a generalization of the DD location (35). By taking
the curvature of Earth into the Cartesian volume of the grid nodes, we
determined the velocity structure for larger scales. The finite-difference
method is used for the determination of the travel times and ray paths.
These data include 14,893 P-wave and 5831 S-wave arrival times (fig.
S1A) recorded at 153 stations (Fig. 1). They form 120,407 P-wave and
22,123 S-wave differential travel times between the events. We used a
layered one-dimensional model as an initial model based on velocities
from local seismic network (9), regional earthquake relocation and to-
mography (18, 20), and discontinuities from receiver function analysis
(fig. S1B) (3).
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Waveform inversions
We constrained absolute focal depths of eight moderate aftershocks
(Mw 5.5 to 6.7 in table S1) by modeling the teleseismic waveforms
(30°< D < 90°) of the direct P and the surface reflection pP and sPwaves
(35, 36). We used local and regional (0° < D < 10°) waveform inversion
methods to determine focal mechanisms for 12 smaller earthquakes
(Mw < 5.5 in table S2; Fig. 2C) (39). These methods involve matching
of complete body waveforms to synthetic waveforms.We assumed that
the source can be represented as a point (the centroid) in space and a
series of overlapping triangles in time. We calculated synthetic wave-
forms using layered velocity and density models (fig. S1B). Amplitudes
were corrected for geometrical spreading using attenuation t* operator
with a value of 1.0 s.
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