UNVEILING THE ENIGMA OF THE 1955, m_b 6.6, SERRA DE TOMBADOR, MATO GROSSO, BRAZIL, EARTHQUAKE OF JANUARY 31, 1955, THE LARGEST KNOWN BRAZILIAN EVENT

utonal Association of Selsmology Vasile MARZA 1 & Anthony LOMAX 2 or

 ¹ Seismological Observatory, Institute of Geosciences, Univ. of Brasilia, Brasilia, DF, BRAZIL
 ² Anthony Lomax Scientific Software, Mouans-Sartoux, FRANCE

General Assembly, 2 - 8 October, 2005 - Santiago, Chile

Organization of the Presentation

- 1. Preamble, Motivation, and the Paper Goal
- 2. Seismotectonic Setting of the Area
- 3. Dataset
- 4. Location Technique
- 5. Methodology and the Results
- 6. Discussion
- 7. Conclusion
- 8. References
- 9. Acknowledgments

nternational Association of Seismology and Physics of the Earth's Interior

Fig. 1 - Overall map of seismicity in Porto dos Gauchos seismogenic area. Diamond - ICC locations; Yellow Square - Engdahl (2002); White circles - epicentres; White squares - towns.

Table 1. Hypocentre parameters for northern Mato Grosso, Brazil, 1955JAN 31 event according to various sources/authors

nternational Association of Seismology and Physics of the Earth's Interior International Association of Seismology and Physics of the Earth's Interio

Sour	ce	Date		Date		Date		Date		Date		Date		Date		Date		0.T. (GMT)	Lat. (°S)	Lon. (°W)	Depth (km)	Horiz. Error (km)	m _b
ISS (1	.962)	1955 JZ	AN 31	05:03:02	12.5	57.4	n	N.A.	N.A.														
CGS/U	ISGS	1955 JZ	AN 31	05:03:03	12.5	57.0	n	N.A.	6.8*)														
Berro et a (198	cal 1. (4)	1955 JZ	AN 31	05:03:07	12.42	57.30	15 (fixed)	N.A.	6.6														
Engda (200	ahl 2)	1955 Ja	an 31	05:03:05.6	12.52	57.35	15 (fixed)	7.3 (S.E.)	N.A.														

Note: n = normal depth (i.e., 33 km); N.A. = not available; S.E. = location standard error *) m_B or M_S scale (?)

nternational Association of Seismology and Physics of the Earth's Interior

2. Seismotectonic setting of the area

Fig. 2. Epicentral map of Brazil's seismicity (period: 1981-2004; magnitude cut-off: 3.0; number of events 804) [*Source:* SISBRA]

A modern instrumental (1981-2004 period) seismicity map of Brazil is presented in Fig. 2. The most western part of the Brazilian territory (west of roughly 72° W) at the Brazil-Peru border region is an Active Continental Region, the result of interaction between Nazca and South American plates. But the major part of the Brazilian territory is characterized by an intraplate seismicity of Stable Continental Region (SCR) type (e.g., Johnston 1989, Schulte & Mooney 2005, etc). The blue box marks the study area.

association of Seismology and Physics of the Earth's Interior

Figure 3 - P wave model showing the complexity of slab structures for South American plate and environs [Courtesy of Van der Hilst, in preparation].

The yellow box shows the study area, note on this raypath the strong wavespeed positive anomaly (blue color).

Association of Seismology and Physics of the Earth's Interior

Map showing Fig. the 4. epicentral distribution and time evolution of epicenter locations for events in Porto dos Gauchos, MT, area (see Table 3 for hypocentral parameters). Colors (transition from red to green) meant to qualitatively are indicate the gradual (temporal) improvement in location (years in brackets show approximately the time for each stage)

tional Association of Seismology and Physics of the Earth's Interio

The seismogenic area of Porto dos Gauchos is the most active area in the SCR of Brazil (see Table 4) and has been a focus of interest and research on Brazilian seismicity.

			Depth	m _R (≈ m _b)					
#	Date		(km)	*)	**)	Other	Remarks		
La		Lat. (°S)	Lon.(°W)	Location/State					
1	31 JAN 1955	(12.4)	(57.3)	P. dos Gaúchos/S. do Tombador/MT	Shallow	6.6	6.2	-	I.E.I. = IX (MM)
2	01 MAR 1955	19.8	36.8	Continental Platform, Vitória, ES	Shallow	6.3	6.1	-	-
3	28 JUN 1939	29.0	48.0	Plataforma Continental Tubarão, SC	Normal	5.5	5.5		ning of the Earth in
4	05 AGO 1983	3.6	62.2	Codajás, AM	23	-	5.5		E.I. = VII (MM)
5	12 FEV 1990	31.19	48.92	Continental Platform, Pto Alegre, RS	13	-	-	5.5 ⁽¹⁾	-
6	13 FEV 1964	18.1	56.7	NW of Mato Grosso do Sul state, MS	5	5.4	5.4	-	-
7	30 MAR 1998	11.7	57.0	Porto dos Gaúchos, MT	V. Shallow	-	-	5.3 ⁽⁴⁾	E.I. ≈ VI-VII
8	20 NOV 1980	4.3	38.4	Pacajús, CE	Shallow	-	5.2	5.2 ⁽²⁾	E.I. = VII (MM)
9	27 JAN 1922	22.2	47.0	Mogi Guaçu/Pinhal, SP	20	5.1			E.I. = VI (MM)
10	30 NOV 1986	5.5	35.8	João Câmara, RN	Shallow	-	-	5.1 ^{(3).}	E.I. = VII (MM)
11	05 FEB 1959	(11.6)	(56.8)	Porto dos Gaúchos, MT	V. Shallow	-	-	5.1 ⁽⁵⁾	E.I. = VI½ (MM)
12	14 DEC 1963	2.3	61.0	Manaus, AM	45	ion of s	eismolo	5.1 ⁽⁶⁾	sics of the Earth s
13	17 SEP 1949	3.8	51.8	Oiapoque , AP	?	5.0			
14	07 nov 1969	37.0	43.8	South Atlantic Ocean	?			5.0 ⁽⁴⁾	
15	03 MAR 1989	5.81	35.56	João Câmara, RN	Shallow			5.0 ⁽⁷⁾	E.I. = VI (MM)
16	23 MAR 2005	11.59	56.77	Porto dos Gaúchos, MT	V. Shallow	-	-	5.0 ⁽⁷⁾	E.I. = VI (MM)

Table 4. The largest known earthquakes in Brazil

Notes: Main Sources:

*) Berrocal et al. (1984) Sismicidade do Brasil (Seismicity of Brazil), IAG/USP & CNEN, São Paulo, 320 pp

**) Assumpção M. (1998) Física de la Tierra, N. 10, p.149-166.

Other Sources:

- (1) Berrocal *et al.* (1996) *Geofisica Int.* **35**: 257-272. (2) Berrocal *et al.* (1983) *Earthg. Predict. Res.* **2**: 191-2-8.
- (3) Brazilian Seismic Bull. Nº 16 (1996) Rev. Bras. Geofísica 14: 77-82.
- (4) I.S.C. Regional Catalogue, International Seismological Centre, UK.
- (5) Marza et al. (1999) Special Report No. 2, Seismological Obs., Univ. of Brasilia.
- (6) Assumpção, M. & Suarez, G. (1988) Geophys. J. 92: 253-267.
- (7) NEIC/USGS Bulletin, National Earthquake Information Center, U.S. Geological Survey, Boulder, CO.

Acronyms:

- E.I. = epicentral (maximum) intensity; I.E.I. = inferred E.I.;
- MM = Modified Mercalli Intensity;
- mR = regional magnitude scale for Brazil; mb = teleseismic body wave magnitude scale.

3. Data set

1955 55	1955 56	
Jun. 31d. 5h. Jan. 2n. Epicemire 19"-5H. 51"-4W.	A At. P. 0-C. 8. 0-C.	Supp. L.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Algiere Univ. 2. 25.0 10 111 44 012 Wordy E. 75.0 10 111 44 012 Boordan 25.4 270 111 46 012 10 11 Boordan 25.4 270 111 46 012 28 + 1 015	0 Pop
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Presso z. 74-4 314 0 11 524 - 1 e 14 47 pp 112 Presso z. 74-4 313 0 11 524 - 1 e 14 47 pp 112 Emissarioy z. 71-4 313 0.11 111 117 -<	11 PeP + 10-1
La Plata Triolata Triolata 192-4 181 1.5 7• 0 10 6 • 1 10.3 192-1 350 0.5 15 • 1 0.0 30 • 0 10 10 10 10 10 10 10 10 10 10 10 10 1	Brenzer Beiteler Hungry Horse Radfarmham (C. z. 78-4) 213 112 6. + 3 Hungry Horse Radfarmham (C. z. 78-7) 28 113 6. + 1 Radfarmham (C. z. 78-7) 28 113 6. + 1 Radfarmham (C. z. 78-7) 28 113 6. + 1 Radfarmham (C. z. 78-6) 213 10 4. + 1 Radfarmham (C. z. 78-6) 213 10 4. + 1 Radfarmham (C. z. 78-6) 213 10 4. + 1	
St. Lucks 16.4 33.9 1.5 43. 1 0.16 44 +16 16.35 PP Cast & Frenzer 27.3 3.53 1.5 66.4 1.16 1.6 2.4 1.1 1.6 2.4 1.1 1.6 2.4 1.1 1.6 2.4 1.1 1.6 2.4 1.1 1.6 2.4 1.1 1.6 2.4 1.1 1.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 2.6 2.4 1.1 1.6 2.4 1.1 1.1 2.6 1.1 1.1 2.6 1.1 1.1 1.6 2.6 1.1 1.1 2.6 1.1 1.1	Chemator-Fermand 194 36 113 10 + 1	\$8 PoP
Herrynda 45.9 35.1 1.6 2.0 0 0.15 0 1.7 0.10 10 PP 0.21.6 Morrida 45.9 310 r.8 2.1 -1 r.15 1.1 1.7 0.10 10 PP 0.21.6 With Char 45.9 310 r.8 2.1 -1 r.15 1.1 1.7 0.10 10 PP 0.21.6 With Char 47.5 30.9 r.9 1.1 10 10 IV -1 Value Char 21.5 30.9 r.9 1.15 0.13 10 IV -1	Instance 81-0 23 112 23 0 110 100 PP e 13 Pretermantaburg 5. 80:0 136 132 14 1	86 Pel ^p
Orientalis 51 4 335 1.6 6 -1 + 16 25 -3 110 26 PoP 0.23 4 Tracellarge 512-6 326 -0 11 -1 -3 110 26 PoP 0.23 4 Weakington 2.3 334 1.0 323 1 1.0 326 Dif -1 -1 10 26 PoP 0.23 4 Weakington 2.3 314 1.0 323 1 1.0 326 Dif -2 10 26 PoP 0.23 4 Weakington 2.34 3.33 1.0 1.0 326 Dif -2 10 26	Trato 80 - 6 43 - 6 13 - 33 + 2 o 123 8 + 16 Plorevise 80 - 7 43 - 19 31 - 2 o 22 - 30 - 6 16 Plorevise 80 - 7 43 - 19 70 - 2 o 22 - 30 - 16 o 16 Plorevise 85 - 4 13 - 13 34 + 2 o 33 - 3 + 8 o 16 Plorevise 85 - 4 13 - 13 34 + 2 o 33 - 3 + 8 o 15	11 IAF =
Pullmades 55:4 315 10 27 -1 117 21 -1 110 38 PuP 0.26 6 Morgonizon 55:0 375 10 34 -1 117 21 -1 110 38 PuP 0.26 6 Wordon 50:1 365 10 34 -1 117 21 -5 110 41 PuP 0.26 6 Hailtys 30:1 335 10 45 -1 0.17 21 -5 110 41 PuP 0.26 6 Unittys 30:1 10 45 -1 0.17 21 -5 110 41 PuP 0.26 0 0.26 0 0.26 0 0.26 0 0.26 0 0.26 0 0.26 0 0.26 0 0.26 0 0.26 0 0 0.26 0 0 0.26 0 0	Viologia Raterula Horesofren Bay 8.0 9.2 0.2 <th< td=""><td>41 Pel^p</td></th<>	41 Pel ^p
Dallos 58-7 321 1 26 1 1 16 1 0	Tributy Bund z. 50-5 43 e1 12 45 e - 4 e 16 1 PP e 22 Horewey Bund z. 50-5 43 e1 12 45 e - 4 e 16 1 PP e 22 Tennator Tennat	PP 414
Storwington Falls 00-4 318 110 9 -4 16 31 16 17 17 Storm Falls 00-5 350 100 11 -5 18 31 +6 10 57 PcP 23-9 Chirago 00-6 314 +10 11 -5 18 21 -1 -6 -7 23-9 Kirkband Lake 03-6 313 +10 34 -1 118 21 -12 -6 -6 23-9 -7 23-9 -7 23-9 -7 23-9 -7 23-9 -7 23-9 -7 -7 -7 -7 -7 23-9 -7 23-9 -7 23-9 -7 23-9 -7 -7 -7 -7 23-9 -7 23-9 -7 23-9 -7 23-9 -7 23-9 -7 23-9 -7 23-9 -7 23-9 -7 23-9 23-9 -7 23-9	Collimate Provide Bay Resolute Bay Resolu	11 PH =
Liebon 8. 080 30 11 20 - 1	Alterna 2004 27 113 17 1 18 18 1 114 114 114 114 114 114 114 1	13 T =
Atmeria T1/2 64 111 23 0 20 309 -1 14 5 57 17 Barrett x T1/2 310 111 53 -1 20 309 -1 14 5 57 17 Boulan x T1/2 311 111 53 +1 -2 111 41 5 57 11 Noisan x T1/2 311 111 312 +1 -1 -1 11 41 57 -1 11 41 57 -1 11 41 57 -1 11 41 57 -1 11 41 57 -1 11 31 +1 -1 -1 -1 11 41 12 -1 -1 11 41 12 -1 -1 11 41 12 -1 -1 11 41 12 12 12 -2 2 <	Cultique Guilique Hierreiou Freena 5 195 - 2 10 110 124 Hierreiou Freena 5 195 - 1 13 124 Hierreiou 5 195 - 1 10 125 Hierreiou 5 195 - 1 10 125 Hierreiou Hierreiou 5 195 - 1 10 125 Hierreiou Hierre	
Palamar Rate Lade City 72-7 211 111 22 0 0 - 111 40 Pyp + 24-9 Missure 72-9 21 12 10 40 0 - 111 40 Pyp + 24-9 Missure 72-9 311 111 40 1 121 10 + 5 112 9 Pyp + 24-9 Installs 2, 74-9 311 111 40 1 121 10 + 5 112 9 Pyp + 23-9	Bagralo 115-6 20 110 164 [+ 4] + 25 48 PP	= =
Wishing you a happy relocation Druitry 07.11.2001 holiday in Russia,		
Fig. 5. Except of the output of ISS Bu	Illetin for 1955 JAN 31 Brazil eartl	nguake

9

4. Location Technique

(Lomax *et al.*, 2000, 2001; Lomax, 2005; <u>www.alomax.net/nlloc</u>; NLL hereafter).

4.1. Likelihood Functions

NLL makes available two different likelihood functions to build the PDFs. One likelihood function incorporates the familiar least-squares L2 norm (LSL2, hereafter). The other likelihood function is based on the equal differential-time (EDT, hereafter). The EDT-likehood function is much more robust than LSL2likehood function in the presence of outliers in the data. With LSL2 norm many of the locations do not converge to reasonable solutions due to strong outlier data.

4.2. Velocity Model and Travel-Time Calculation

The travel times used for location are calculated for a spherical Earth using the TauP Toolkit (Crotwell *et al.*, 1999; <u>www.seis.sc.edu/software/TauP</u>), using the 1D, ak135 model (Kennett *et al.* 1995).

Table 2. Hypocentre parameters for Porto dos Gauchos, MT, Brazil, 1998 MAR 10mainshock according to various sources

Source	O.T. (UTC)	RMS (s)	Lat. (°S)	Lon. (º W)	Depth (km)	Smaj; Smin (km)	Mag.	∆r (km)
IDC	23:32:43.3		11.588	56.855	0 (f)	17.1; 14.5	5.1L	
NEIC	23:32:43.7	0.9	11.672	57.002	10 (f)	of Seismology and	5.2b	Earth's Int
ISC	23:32:43.5	0.9	11.745	56.963	10 (f)	6.0; 5.5	5.3b	
OBSIS/UnB	23:32:39.9	1.7	11.65	56.83	2 (f)	of Seismolony and	5.2R	Farth's Int

NOTE: Δr = shift from average epicenter;

Mag. = magnitude (L stands for M_L ; b stands for m_b ; and R stands for m_R scales)

Figure 6 - Station distribution for 1955 events. Yellow dots are "close 40" stations, whereas red dots are "far 40" stations

5. Methodology and the Results

5.1. Relocations of the 1955 Earthquake

All data set

Close 40 data set

emational Association of Seismology and Physics of the Earth's Interior

Far 40 data set

International Association of Seismology and Physics of the Earth's Interior

Compound plot of locations for 1955 event

Fig. 7. Compound plot of the NLL relocation of the 1955 mainshock. Red PDF cloud represents 'far 40' data set, blue PDF cloud represents 'all' data set, and green PDF cloud represents 'close40' data set. Diamond symbol marks the epicentres of ISS/ISC, cube marks Engdahl (2002) 1955 epicentre, and tetrahedron marks the "persistent epicentre".

sociation of Seismology and Physics of the Earth's Interio

Table 5. ML Hypocentres for 1955 January 31 event

Data Set	О.Т.	Lat.	Lon.	Depth	rms (sec)	Nphs	Gap (°)	Δr (km)
All	05:00:05.6	-12.1602	-57.2852	21.78	8.3	206	59	82
Close 40	05:00:07.3	-12.4961	-57.3477	37.50	9.8	36	189	116
Far 40	05:00:03.3	-11.8613	-57.2090	0.05	7.7	170	178	53

Note:

ML hypocenter highlighted in red is the preferred solution. Δr = shift from average epicentre

International Association of Seismology and Physics of the Earth's Interior

ternational Association of Seismology and Physics of the Earth's Interior

N95 W-25 115 1998.03.10 Porto dos Gauchos 1955.01.31 Serra do Tombador 57W 56W 105 50.0 km

5.1. Relocations of the 1998 Earthquake

Fig. 8. Compound plot of the NLL relocation of the 1998 mainshock. Red PDF cloud represents 'far 40' data set, blue PDF cloud represents 'all' data set, and green PDF cloud represents 'close40' data set. Diamond symbol marks the epicentres of ISS/ISC, cube marks Engdahl (2002) 1955 epicentre, and tetrahedron marks the "persistent epicentre".

sociation of Seismology and Physics of the Earth's Interio

ernational Association of Seismology and Physics of the Earth's Interior

Table 6. ML Hypocentres for 1998 March 10 event

Data Set	O.T.	wan Lat.	Lon.	Depth	rms (sec)	Nphs	Gap blogy (°) Physic	Δ s of It (km) is int in
All	23:32:42.8	-11.7148	-56.8555	0.10	177.9	155	46	14
Close 40	23:32:45.2	-11.8594	-56.6719	11.33	4.0	13	207	32
Far 40	23:32:46.5	-11.3906	-56.9219	15.23	179.8	142	106	27

International Association of Seismology and Physics of the Earth's Interior

iternational Association of Seismology and Physics of the Earth's Interior

International Association of Seismology and Physics of the Earth's Interior

International Association of Seismology and Physics of the Earth'

6. Discussion

These results show that the previously determined, southern location for the 1955 mainshock may be an artifact of travel time bias due to 3D structure relative to the laterally homogeneous ak135 model for the regional stations at distances up to 40 degrees.

These stations are grouped along the subduction and tectonic zones along the west and north coasts of South America and around the South American craton. Rays towards the Mato Grosso area from the close stations along the western subduction zone and the southern craton and have most of their path lengths in the subducting slab and in the cratonic lithosphere under Brazil (Figure 3).

Figure 3 - P wave model showing the complexity of slab structures for South American plate and environs [Courtesy of Van der Hilst, in preparation].

The yellow box shows the study area, note on this raypath the strong wavespeed positive anomaly (blue color).

Upper-right insert shows station distribution used here.

International Association of Seismology and Physics of the Ex7. In Conclusion

Using the robust EDT location technique and different distance subsets of the available phase data we have shown that the epicentre of the 1955 Brazilian earthquake is not in the Serra do Tombador area, but more likely in the Porto dos Gauchos area where all modern seismicity is located.

We find compelling evidence that the Serra do Tombador location for the 1955 epicenter is biased due to the strong 3D structure around Brazil and the inherent limitations of the available data.

International Association of Seismology and Physics of the Earth's Interior

iternational Association of Seismology and Physics of the Earth's Interior

22

International Association of Seismology and Physics of the E 8. References

http://alomax.free.fr/pub_list.html

nternational Association of Seismology and Physics of the Earth's Interior

9. Acknowledgments

We thank Antonio Villasenor, Bob Engdahl and Marcelo Assumpçao for collaboration, discussion and criticism.

Dmitry Storchak, of ISC, Thatcham, Berks, UK, kindly provided the copy of ISS Bulletin with the phase data of the 1955 event.

Pedro F. de Andrade helped with editing.

#	Date	O.T. (UTC)	Lat. (°S)	Lon (°₩)	(≡m _R)	(År (km)	So ur ce	Remarks
1	1955 JAN 31	05:03:02	12.5	57.4	N.A.	120	a	Regional & Tele data
1a‡	1955 JAN 31	05:03:03	12.5	57.0	6.8	103	a‡	Regional & Tele data
1a¶	1955 JAN 31	05:03:07	12.42	57.30	6.6	106	a [¶]	Regional & Tele data
1a [#]	1955 JAN 31	05:03:06	12.552	57.35	N.A.	119	a [#]	Regional & Tele data
2	1959 FEB 05	Daytime	(11.6)	(56.8)	5.1	-	b	Macroseismic data
3	1981 MAR 09	17:27:40	11.01	57.64	3.8	113	С	Regional data
4	1986 NOV 17	20:36:06	11.56	56.58	3.6	24	С	Regional data
5	1987 OCT 15	06:01:41	11.6	56.9	3.9	11	С	Regional data
6	1987 DEC 10	18:36:33	11.5	56.9	3.3	16	С	Regional data
7	1988 AUG 11	04:06:13	11.70	57.21	3.7	46	С	Regional data
8	1988 AUG 11	05:06:11	11.71	57.15	3.9	40	С	Regional data
9	1988 AUG 11	07:06:	11.69	57.21	3.6	46	С	Regional data
10	1988 AUG 11	08:07:	11.70	57.14	3.8	39	С	Regional data
11	1988 OCT 03	02:02:36	11.71	57.07	3.2	32	С	Regional data
12	1988 OCT 03	05:04:	11.76	57.10	3.1	37	С	Regional data
13	1989 JUL 31	07:17:	11.48	56.76	2.5	14	С	Regional data
14	1993 MAY 10	15:17:	11.5	56.8	3.8	11	С	Regional data
15	1996 NOV 06	04:14:21	11.27	56.80	4.4	37	С	Regional data
16	1998 MAR 10	23:32:44	11.53	56.86	5.3	10	С	Regional data
17	1998 APR 06	08:08:03	11.61	56.81	2.6D	2	С	Local data; AS of #16
18	1998 APR 08	17:56:44	11.61	56.80	2.8D	2	С	Local data; AS of #16
19	1998 APR 09	02:02:43	11.61	56.81	2.2D	2	ato ^C of S	Local data; AS of #16
20	1998 APR 10	11:06:43	11.62	56.79	2.2D	3	С	Local data; AS of #16
21	2005 MAR 23	21:12:00	11.64	56.83	5.0	5	d	Regional & Tele data
22	2005 JUL 20	16:41:25	11.6	56.8	4.3	0	d	Regional & Tele data

Table 3. Synopsis of hypocentre parameters for located events in seismogenic areaof Porto dos Gauchos, MT, Brazil