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Motivation - I

• The purpose of this workshop is to propose
and discuss procedures that would improve
routine daily ISC locations.

• The purpose of this paper is to generate
discussion!



Motivation - II

• WHY MULTIPLE EVENT LOCATION (MEL)?

• Path effects dominate location bias. Path effects are
persistent for multiple adjacent events to common stations.

• Master event, JHD, HDC, and Double-Difference methods
have demonstrated that relative locations between events in
clusters are more accurate than individual event locations.
The absolute locations of poorly located events are
improved relative to the better located events

• With the exception of local data & depth phases, adding
secondary phases does not promise the same potential for
location improvement as MEL



Attempted Demonstration with NTS
GT Data

• Large number of GT0 events provide
demonstration with known answer

• Choose a subset of events for demonstration
purposes

• Can we better detect outliers in MEL?



Methodology

1. Single Event Locations (SEL)

2. Multiple Event Locations (MEL)
• Heavily regularized inversion based on

correlated model and data variance weighting

3. Identify event residual patterns (ERPs)
that do not look like other events



Multiple Event Location (MEL)

Tobs(i,j) = Tpred(R(i),R(j)) + c(R(i)) for i’th station and j’th event

Starting with Single Event Location (SEL), m = [x(1,…,Ne), y(1,…,Ne)]

Incrementally solve, A m’ = d
Model vector, m’ = [δx(1,…,Ne), δy(1,…,Ne), c(1,…,Nsta)]’
Data vector, d = [Tobs(1,…,Ndata)-Tpred(1,…,Ndata), constraint(1,…,Ncon)]’

Model covariance matrix, Cm, constructed from correlation model
<δxjδxk> = σx

2 e-Djk/D0 (neighboring events have similar solution)
<δyjδyk> = σy

2 e-Djk/D0

<δcpδcq> = σc
2 e-Dpq/C0 (neighboring stations have similar path effect)

Data covariance matrix, Cd, constructed from prior locations
Cd ~ σo

2 if residual < less than 2σo, otherwise Cd ~ d2

Effectively consistent with “uniform reduction”
Diagonal matrix ignores correlated errors

Solve linear system, (A’ Cd
-1 A – Cm

-1 ) m’ = Cd
-1d, using bi-conjugate

gradient or sub-space methods



NTS GT0

Yucca
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MEL Station Corrections
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Obvious outliers are more obvious!



Flagged MEL Residual Outliers



Flagged MEL Residual Outliers

Tails (outliers) tend to be located at same stations and networks



Is the residual pattern similar?

• Common stations for events J & K
• Test some simple metrics?

EventJ

EventK

StationI 1 2 3 4 5 6 7 8 …



Residual Pattern Anomaly Detection?

For common stations at pairs of events, j & k examine some
test statistics for events that do not match

Residual difference between residual patterns
Djk = Σι (Rij-Rik)2 / σj σk

Robust difference between residual patterns
D’jk = Medianι |Rij-Rik| / Medianι |Rij| / Medianι |Rik|

Correlation between residual patterns,
ρjk = Σι (Rij * Rik) / |Rij || Rik|



Flagged SEL Residual Patterns (differences)
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Flagged MEL Residual Patterns (1-correlation)
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Summary

• MEL is inherently more stable and straight
forward than SEL

• Some location outliers are detected based
on residual patterns

• Promising but incomplete analysis of an
automated outlier detection procedure
– Need to complete the loop on outlier rejection

and comparison with GT locations


